IMPLEMENTASI LONG SHORT TERM MEMORY UNTUK MENDETEKSI UJARAN KEBENCIAN PADA MEDIA SOSIAL DI INDONESIA

Irma Agustina(1), Suhendro Suhendro(2), Sriyanto Sriyanto(3),


(1) Pasca Sarjana,Magister Teknik Informatika, IBI Darmajaya, Bandar Lampung, Indonesia
(2) Pasca Sarjana,Magister Teknik Informatika, IBI Darmajaya, Bandar Lampung, Indonesia
(3) Pasca Sarjana,Magister Teknik Informatika, IBI Darmajaya, Bandar Lampung, Indonesia
Corresponding Author

Abstract


Pada penelitian ini, akan diimplementasikan algoritma Long Short-Term Memory (LSTM) pada kasus ujaran kebencian, khususnya yang berkaitan dengan ujaran kebencian dengan pemerintah. Algoritma Long Short-Term Memory merupakan salah satu jenis arsitektur dari Recurrent Neural Network (RNN) yang biasa digunakan pada masalah-masalah yang berkaitan dengan deep learning. Terdapat berbagai penelitian yang menerapkan LSTM. Pada penelitian, Long Short Term Memory Reccurent Neural Network digunakan sebagai model prediksi statis untuk memprediksi nilai dari indikator polusi udara dalam deret waktu. Filter Kalman digunakan sebagai model menyesuaian dinamis (dynamic adjustment model). Pertama, model prediksi statis digunakan untuk memprediksi nilai dari suatu polutan pada pada saat tertentu (misal, saat uji dilakukan), kemudian model penyesuaian dinamis digunakan untuk secara dinamis menyesuaikan nilai prediksi yang diperoleh dari model prediksi statis berdasarkan nilai observasi dari polutan tersebut.

Kata Kunci: Long Short Term Memory, Ujaran Kebencian, Media Sosial, Deep Learning, Neural Network

References


DAFTAR PUSTAKA


Full Text: PDF

Article Metrics

Abstract View : 364 times
PDF Download : 317 times

DOI: 10.58486/jsr.v7i2.262

Refbacks

  • There are currently no refbacks.